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The applicability of the electric modulus formalism is investigated on a Debye-type
relaxation process, the interfacial polarization or Maxwell—Wagner—Sillars effect. Electric
modulus, which has been proposed for the description of systems with ionic conductivity
and related relaxation processes, presents advantages in comparison to the classical
approach of the real and imaginary part of dielectric permittivity. In composite polymeric
materials, relaxation phenomena in the low-frequency region are attributed to the
heterogeneity of the systems. For the investigation of these processes through electric
modulus formalism, hybrid composite systems consisting of epoxy resin—metal
powder—aramid fibres were prepared with various filler contents and their dielectric spectra
were recorded in the frequency range 10 Hz—10 MHz in the temperature interval 30—150 °C.
The Debye, Cole—Cole, Davidson—Cole and Havriliak—Negami equations of dielectric
relaxation are expressed in the electric modulus form. Correlation between experimental
data and the various expressions produced, shows that interfacial polarization in the
systems examined is, mostly, better described by the Davidson—Cole approach and only in
the system with the higher heterogeneity must the Havriliak—Negami approach be used.
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1. Introduction
Interfacial polarization, termed the Maxwell—Wagner—
Sillars (MWS) effect [1—3], is observed in hetero-
geneous systems composed of two or more phases. As
a result of the difference in conductivities and permit-
tivities of the constituents, space-charge build-up oc-
curs at the macroscopic interfaces. The accumulation
of charges changes the electric field, in contrast to the
other types of polarization (atomic, electronic, dipo-
lar) which are produced by the displacement or ori-
entation of bound charge carriers.

A theoretical approach to the subject in terms of
dielectric theory leads to a Debye-type relaxation [4].
Suitable dispersion equations describing the phenom-
enon are given by Van Beck [5], Von Hippel [6] and
Böettcher and Bordewijk [7].

In polymers and composite polymeric materials,
interfacial polarization is almost always present be-
cause of additives, fillers or even impurities which
make these systems heterogeneous. Usually, in sys-
tems with a conductive component, interfacial relax-
ation is obscurred by conductivity and the dielectric
permittivity may be as high as 1000 at low frequencies
[8]. To overcome this difficulty in the study of inter-
facial polarization, it has been decided to use the
formalism ‘‘electric modulus’’, first introduced by
McCrum et al. [9]. Macedo et al. [10] were the first to
exploit the modulus and used it for the investigation of
*Author to whom all correspondence should be addressed.

0022—2461 ( 1998 Chapman & Hall
electrical relexation phenomena in vitreous ionic con-
ductors. It has also been used in polymers to study
their conductivity relaxation behaviour [11—14].

Electrical relaxation phenomena are usually ana-
lysed in terms of the dielectric permittivity by the
relaxation of the electric displacement vector, D, under
the constraint of constant electric field, E. However, in
dielectrics containing mobile charges, it seems conve-
nient to concentrate on the relaxation of the electric
field, E, under the constraint of a constant displace-
ment vector, D [15], which leads to the inverse dielec-
tric permittivity and the definition of electric modulus.
An advantage of using the electric modulus to inter-
pret bulk relaxation properties is that variations in the
large values of permittivity and conductivity at low
frequencies are minimized. In this way the familiar
difficulties of electrode nature and contact, space
charge injection phenomena and absorbed impurity
conduction effects, which appear to obscure relaxation
in the permittivity presentation, can be resolved or
even ignored [11].

Complex modulus, electric modulus or inverse com-
plex permittivity, M*, is defined by the following
equation
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Figure 1 Particle-size distribution of aluminium powder: (a) major
axis, (b) axis ratio.

where M@ is the real and MA the imaginary electric
modulus, and e@ the real and eA the imaginary permit-
tivity.

It is interesting to adapt the above formalism to
study interfacial polarization in composite polymeric
materials which have metal powder as one of their
constituents.

In this work, hybrid polymeric composites [16],
consisting of an epoxy resin matrix having, as fillers,
Kevlar fibres and aluminium particles in various pro-
poritons, were examined, using electric modulus. The
original equations of dielectric dispersion with one
relaxation time or distribution of relaxation times,
either symmetric or asymmetric, are expressed in the
electric modulus form and used accordingly.

2. Experimental procedure
A commercially available bisphenol-type epoxy resin
(Epikote 828, Shell Co.) was used as a prepolymer
having molecular weight &320 and viscosity
25 000 mPa s at 25 °C. As curing agent, triethylene
tetramine at 8 p.h.r. (parts of curing agent per hundred
parts of resin) was employed. The product Kevlar 49
aramid pulp of E.I Du Pont de Nemours was used as
filler which had the following properties: mean length
of fibres 2 mm, diameter &14 lm and density
1.44 g cm~3 [17]. Before use, it was dried at 100 °C for
2 h. Aluminium powder (Merck) was also used as filler
which consisted of particles that were ellipsoidal in
shape with varying size distribution, Fig. 1a, b.

Composites with 0, 0.5, 1.0, 1.5 p.h.r. in Kevlar
fibres and aluminium powder 0, 5, 15, 25 p.h.r., were
prepared. For every content of aluminium powder in
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the epoxy resin, four specimens were prepared with
the above varying content of Kevlar fibres. The prep-
aration was carried out as follows: epoxy prepolymer
was heated at 60 °C, and then distilled acetone con-
taining the required Kevlar pulp quantity was added
to the resin. The mixture was heated to 130 °C to
remove the acetone, then cooled freely to 60 °C and
the curing agent was added. Afterwards the required
quantity of aluminium powder was added with con-
tinuous stirring. The composite was then poured into
suitable plexiglass moulds. Initial curing was carried
out at ambient conditions for 24 h, followed by post-
curing at 100 °C for 48 h.

Specimens in circular disc form, 60 mm diameter
and 3 mm thick, were produced by machining the
original castings. Satisfactorily homogeneous com-
posites were produced, exhibiting no visible flaws or
voids. The faces of the specimens were painted with
silver paint to improve contact and were stored in
a vacuum desiccator in the presence of silica gel for at
least 5 d before measurement, to avoid any influence
of moisture.

Dielectric measurements were performed using
a video-bridge (T2100 of Electro Scientific In-
struments Co.) in the frequency range 20 Hz—20 kHz
and an impedance analyser (4192A Hewllet Packard)
in the frequency range 20 kHz to 10 MHz. The test cell
was a three-terminal guarded system according to
ASTM D150-92 and D257-91 specifications. Details
of the test cell are given elsewhere [18]. Measurements
were performed in the temperature range 30—150 °C.
D.c. conductivity measurements were performed using
the conductivity cell HP 16008B and the high-resist-
ance meter HP 4339A Hewlett Packard.

3. Results
The change in the real, M@, e@, and imaginary, (MA, eA),
parts of the electric modulus and dielectric permittiv-
ity versus frequency is shown in Figs 2 and 3 for two
values of the content of Kevlar fibres and constant
aluminium content at different temperatures. It can be
clearly seen that values of (M@) increase with frequency
and reach a rather constant value, while values of e@, as
expected, decrease to an almost constant value. In the
frequency range of this transition, peaks in the values
of MA, are developed, indicating a relaxation process
which is not evident in the values of eA. An increase in
temperature leads to a decrease in the values of M@,
(increase in e@) in the low-frequency range, but is
ineffective at higher frequencies (Figs 2a, b, 3a, b). In-
creasing the temperature shifts the peaks of MA to
higher frequencies, as shown in Figs 2c and 3c. Finally,
increasing the content of Kevlar fibres decreases the
values of M@, but increases the peak values of MA.

In Fig. 4, the imaginary parts of electric modulus (a)
and dielectric permittivity (b) versus frequency are
shown for three different Kevlar fibre contents at the
temperature of 150 °C. In the dielectric loss presenta-
tion, Fig. 4b, losses are high and do not form any peak
in the frequency window of the measurements. In the
electric modulus presentation, Fig. 4a, peaks are for-
med, their maxima increase with Kevlar content and



Figure 2 (a, b) Real M@, e@ and (c, d) imaginary MA, eA parts of electric modulus and dielectric permittivity versus frequency for various
temperatures of the composite with 25 p.h.r. in Al and 0.5 p.h.r. in Kevlar fibres. (n) 140 °C, (h) 145 °C, (#) 150 °C.

Figure 3 (a, b) Real M @, e @ and (c, d) imaginary MA, eA parts of electric modulus and dielectric permittivity versus frequency for various
temperatures of the composite with 25 p.h.r. in Al and 1.5 p.h.r. in Kevlar fibres. (]) 135 °C, (n) 140 °C, (h) 145 °C, (#) 150 °C.
shift slightly at the same time towards the left side of
the frequency spectrum, thus providing means for
study of relaxation.

The Cole—Cole graph for the electric moduli of the
two systems depicted in Figs 2a, c and 3a, c, is shown
in Fig. 5. In both cases, the graph resembles a sup-
pressed semicircle implying a certain deviation from
the pure Debye behaviour. Increasing the Kevlar con-
tent moves the semicircle towards the origin. This
behaviour was shown by all specimens.
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Figure 4 Imaginary parts of (a) electric modulus and (b) dielectric
permittivity of composites with varying Kevlar content, at the
temperature of 150 °C. Al 25 p.h.r. and Kevlar (n) 0.5 p.h.r., (])
1.0 p.h.r., (h) 1.5 p.h.r.

4. Discussion
The time dependence of the electric field, E, and the
displacement vector, D, in a dielectric medium can be
described by the differential equation [9]
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constant electric field, and e
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values of permittivity, when xP0 and xPR, respec-
tively. In the case of constant displacement vector and
time-varying electric field, the solution of the above
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are the frequencies where the max-

imum losses are occurring in the modulus and permit-
tivity mode.

Considering the influence, on a dielectric system, of
a frequency-dependent electric field, E, and displace-
ment vector, D, and using the relation
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the solution of Equation 2 can be written
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Resolving the real and imaginary part of Equation 7,
Equations 8 and 9 are produced, which describe the
electric field relaxation, in the frequency domain mode
for a single relaxation time, in terms of electric
modulus
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Figure 5 Cole—Cole plots of the hybrid composites with 25 p.h.r. in Al and (a) 0.5 p.h.r., (b) 1.5 p.h.r. in Kevlar fibres. (#) 125 °C, (s) 130 °C,
(]) 135 °C, (n) 140 °C, (h) 145 °C, (#) 150 °C.



The above equations are equivalent with the very
well-known Debye’s dispersion equations.

Elimination of xt between Equations 8 and 9 leads
to the equation
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which represents a semicircle with radius
r"(M
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4
)/2 and centred at a distance
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)/2 from the origin, in complete accordance

with the corresponding equation in Debye’s treat-
ment.
The influence of the distribution of relaxation times,
in the permittivity mode, has been introduced by
Cole—Cole [19—21]. In order to include the influence
of the distribution of relaxation times in Equations
8 and 9, the Cole—Cole equations are combined with
Equation 1 and the expressions below are derived
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It can be seen that for a"0 the above expressions
reduce to Equations 8 and 9 for a single relaxation
time.

From Equations 11 and 12 the following expression
representing the equation of a semi-circle can be de-
rived
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Davidson and Cole [22], aiming to account for an
asymmetric distribution of relaxation times resulting
from a dielectric dispersion within a system, introduc-
ed the parameter c in Debye’s dielectric function.

Using the same procedure, as in the Cole—Cole
consideration, the Davidson—Cole equations are
changed into the electric modulus form and have the
expressions
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Equations 16 and 17 for c"1 are reduced to the
corresponding Equations 8 and 9 for a pure Debye
process.

The generalization introduced by Havriliak and
Negami [23], in the permittivity mode, can also be
expressed in terms of M@ and MA as follows

M@"M
=

M
4

]
[M

4
Ac

#(M
=
!M

4
) cos c/]Ac

M2
4
A2c

#2Ac(M
=
!M

4
)M

4
cos c/#(M

=
!M

4
)2

(19)

MA"M
=

M
4

]
[(M

=
!M

4
) sin c/]Ac

M2
4
A2c

#2Ac(M
=
!M

4
)M

4
cos c/#(M

=
!M

4
)2

(20)

where A and / are given by Equations 13 and 14.
Equations 19 and 20 give:

for c"1 and a"0 the Debye Equations 8, 9
for c"1 and aO0 the Cole—Cole Equations

11 and 12, and
for cO1 and a"0 the Davidson—Cole Equa-

tions 16, and 17.

In the case of a heterogeneous material, the disper-
sion equation describing interfacial polarization [3] is
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given by
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In terms of M@ and MA, Equations 21 describing
interfacial polarization can also be transformed
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Equations 23 and 24 when rP0 give the Debye
Equations 8 and 9 for a single relaxation time.

Relaxation peaks shown in Figs 2c, 3c, and 4a are
attributed to an interfacial polarization process. In the
range of frequencies where these peaks are formed
only interfacial relaxation processes have been re-
ported for the epoxy resin [24] and no relaxation of
any kind for the Kevlar fibres [25]. Further support to
this statement is given by Fig. 6. It shows Cole—Cole
plots for three different specimens: (a) a composite
with 25 p.h.r. Al and 1.5 p.h.r. Kevlar in epoxy resin,
(b) a composite with 25 p.h.r. Al in epoxy resin, and (c)
a composite with 1.5 p.h.r. Kevlar in epoxy resin.
Specimen (a) with higher heterogeneity corresponds to
greater dielectric losses and its semicircle is more com-
pletely formed compared to specimens (b) and (c). At
the same time, the increase in heterogeneity shifts the
2032
of a single relaxation time. In Fig. 6, experimental
points resulting from the composite (c) are best fitted
to a curve close to a semicircle with the David-
son—Cole approach and c"0.675. Experimental
points resulting from composite (b) of Fig. 6 are best
fitted to a semicircle with the Cole—Cole approach and
exponent a"0.160. In a previous work [26] concern-
ing composite polymeric systems with epoxy resin and
metal powders (copper, iron) interfacial relaxation was
better described by the Cole—Cole Equations
(11, 12, 13) with a"0.156.

In Fig. 8, two Cole—Cole plots, for different epoxy
resin—Kevlar fibre systems are presented. The experi-
mental data of the system with low Kevlar fibre con-
tent are best fitted to the Davidson—Cole treatment
with exponent c"0.805. In the system, with increased
Kevlar content, the same approach leads to a value of
c"0.670. Apparently the inclusion of asymmetric
particles in composites, such as Kevlar fibres, created
an additional asymmetric distribution of relaxation
times. It is then concluded that the inclusions inter-
vene in the process of interfacial relaxation. Examining
systems with increased heterogeneity, as the hybrid
composites of Fig. 9, the same qualitative conclusions
are reported. An increase in the Kevlar content results
Figure 6 Cole—Cole plots of the systems with (a) 25 p.h.r. in Al and 1.5 p.h.r. in Kevlar fibres. (b) 25 p.h.r. in Al, (c) 1.5 p.h.r. in Kevlar fibres.
For key, see Fig. 5.
whole relaxation process to lower frequencies indicat-
ing also the MWS nature of the effect.

To distinguish which one of the equations de-
veloped describes better the process of interfacial re-
laxation in these systems, the Cole—Cole plots in
electric modulus are again examined. Fig. 7 shows that
the Davidson—Cole approach with c"0.680 is best
fitted to experimental points of Fig. 5a and the Hav-
riliak—Negami approach with c"0.865 and a"0.105
is best fitted to the experimental points of Fig. 5b.
These last values suggest a behaviour close to the state



Figure 7 Cole—Cole plots of the systems with 25 p.h.r. in Al and (a) 0.5 p.h.r. (b) 1.5 p.h.r. in Kevlar fibres. Each line represents a different
approach: (a) (— )—) MWS approach; (— —) Cole—Cole behaviour with a"0.185. (——) Davidson—Cole approach with c"0.680, which is
the best fitted curve to experimental points. (b) (— )—) MWS approach; ( - - - ) Cole—Cole behaviour with a"0.165; ( ) ) ) ) Davidson—Cole
behaviour with c"0.770. (—) Havriliak—Negami approach with a"0.105 and c"0.865, which is the best fitted curve to experimental
points. For key, see Fig. 5.

Figure 8 Cole—Cole plots of the systems with (a) 0.5 p.h.r. and (b) 1.5 p.h.r. in Kevlar fibres. Experimental points are best fitted to the
Davidson—Cole approach with values of the c parameter (a) 0.800 and (b) 0.675. For key, see Fig. 5.
2033



Figure 9 Cole—Cole plots of the hybrid systems with 15 p.h.r. in Al and (a) 0.5 p.h.r., (b) 1.5 p.h.r. in Kevlar fibres. Experimental points are best
fitted to the Davidson—Cole approach with values of the c parameter (a) 0.805 and (b) 0.635. For key, see Fig. 5.

TABLE I Parameters used/evaluated for the Davidson—Cole, Cole—Cole and Havriliak—Negami functions

Composite material Function M
4

M
=

a c

Ep.#0.5 p.h.r. Kevlar Davidson—Cole 0.0450 0.1720 — 0.800
Ep.#1.5 p.h.r. Kevlar Davidson—Cole 0.0120 0.1800 — 0.675
Ep.#25 p.h.r. Al Cole—Cole 0.0230 0.0880 0.160 —
Ep.#15 p.h.r. Al#0.5 p.h.r. Kevlar Davidson—Cole 0.0145 0.0735 — 0.805
Ep.#15 p.h.r. Al#1.5 p.h.r. Kevlar Davidson—Cole 0.0170 0.0775 — 0.635
Ep.#25 p.h.r. Al#0.5 p.h.r. Kevlar Davidson—Cole 0.0250 0.0790 — 0.680
Ep.#25 p.h.r. Al#1.5 p.h.r. Kevlar Havriliak—Negami 0.0058 0.0634 0.105 0.865
in a broader asymmetric distribution of relaxation
times, the values of parameter c change from 0.800 to
0.680 for the same change of Kevlar fibre content, as in
the previous binary systems. However, examining sys-
tems with higher heterogeneity, Fig. 7, this systematic
change in the exponent c, does not appear. In contrast,
alteration of Kevlar fibre content from 0.5 p.h.r. to
1.5 p.h.r. and for the same (25 p.h.r.) aluminium pow-
der content produces a narrower distribution of relax-
ation times, attributed to the intensity of the
interfacial polarization effect and to the induced mac-
roscopic homogeneity performance of the materials.
All fitting parameters are shown in Table I.

At the low-frequency end, the formed semicircle
(Figs 5 and 7) does not reach the origin but has a small
positive intersect on the M@ axis, evidence of a dielec-
tric relaxation process or of existing electrode polar-
ization [27]. The care taken to achieve good electrical
2034
contact between electrodes and specimens and the
formation of a semi-circle corresponding to conduct-
ivity relaxation, Fig. 7, besides the Maxwell—Wag-
ner—Sillars relaxation process, when using Equations
23—25 and the measured value for conductivity
(r"1.1]10~14 ohm~1 cm~1), are supporting the first
of the two assumptions. At the high-frequency end
(Figs 5—7), another process starts which has been
attributed to the orientation of dipolar groups
[24, 28, 29]. The semicircle at the high-frequency end
is a little skewed, and this deviation has also been
observed in polystyrene—glass beads composites [30].
It is most probable that this behaviour is connected
with the start of a new process as already stated but it
also expresses the asymmetrical character of the distri-
bution of relaxation times.

Because, as a result from the above discussion,
the Davidson—Cole approach is most suitable for the



Figure 10 The real part, M@ and the imaginary part, MA, of electric modulus, M* versus frequency, at 150 °C of the composites with 25 p.h.r.
in Al and (a, c) 0.5 p.h.r. in Kevlar fibres (b, d) 1.5 p.h.r. in Kevlar fibres. (—) The Davidson—Cole approach in plots (a) and (c) and the
Havriliak—Negami approach in plots (b) and (d) (— )—) The MWS approach. (#) Experimental points.
description of interfacial relaxation in the composites
with moderate heterogeneity and the Havriliak—
Negami approach for the systems with higher hetero-
geneity, Equations 16, 17 and 19, 20 are represented in
Fig. 10a—d together with experimental points at
150 °C. The Maxwell—Wagner—Sillars approach
(Equations 23 and 24) is also shown. It can be clearly
seen, especially from Fig. 10c and d that the David-
son—Cole and Havriliak—Negami equations fit better
to the experimental points. The deviation of the MWS
approach from the observed behaviour must be at-
tributed to the presence of a distribution of relaxation
times and to the small value of conductivity, r, of the
systems, because as has been noted, for very small
values of conductivity the MWS Equations 23 and 24
reduce to those for a pure Debye-like relaxation pro-
cess (Equations 8 and 9).

The increase in the values of M@ and the subsequent
development of MA peaks with increasing frequency is
a characteristic behaviour of a dielectric dispersion.
The constant value of M@ at higher frequencies is due
to the fact that interfacial polarization is ineffective at
higher frequencies, as large dipoles developed at the
interfaces cannot follow the electric field when the
frequency is high (Figs 2a, c, 3a, c 10). The small de-
crease of M@ values with the temperature increase in
the low-frequency range (Figs 2a, 3a) results from the
increased motion of large parts of molecular chains in
the polymer as ¹

'
(&180 °C) is approached. Orienta-

tion of the large dipoles at the interfaces becomes
easier and permittivity is increased with the conse-
quent decrease in M@ values. At higher frequencies,
orientation is not possible and temperature becomes
Figure 11 Arrhenius plot of the loss peaks locations versus 1/¹.
Data for composites with 0.5 or 1.5 p.h.r. in Kevlar fibres and
25 p.h.r. in Al are scattered about a curve representing the function,
lnf"A#B/¹ to which data are fitted. The correlation factor is
R"0.97.

ineffective. As a consequence of the described behav-
iour, peaks in the values of MA (Figs 2c, 3c) are slightly
displaced to greater values of frequency.

The decrease in the values of M@ with increase in the
Kevlar fibre content, as observed in Figs 2a and 3a, is
exactly a result of the logarithmic law of mixtures
[31], as has also been observed with composites of
epoxy resins and Kevlar fibres [32]. Increase in the
peak values of MA is attributed to the increased het-
erogeneity introduced by the higher content in Kevlar
fibres and the consequent increase of the dielectric
losses.

The shift in the Cole—Cole plots (Fig. 5) towards
the origin with increasing Kevlar fibre content is
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understood after the explanation of the change of M@
and MA with change in the fibres content of the com-
posite, thus implying an increase in relaxation time
with heterogeneity [18].

Fig. 11 shows the Arrhenius plot of the loss peak
locations versus 1/¹. Data for composites with 0.5 or
1.5 p.h.r. in Kevlar fibres and 25 p.h.r. in aluminium
are scattered about the same line. An activation en-
ergy of 139 kJ mol~1 (1.44 eV) is obtained for this
MWS relaxation process. A value of 0.87 eV has been
reported for a composite with Kevlar fibres and glass
beads [33].

As is assumed by the above analysis of the behav-
iour of the composites examined in this work, the
complex permittivity and the complex electric
modulus contain the same information. However, it is
more effective sometimes to present this information
in the electric modulus formalism than in the dielectric
mode. The use of imaginary part, MA, over the loss
factor, eA, offers advantages especially in cases where
the values of eA show a considerable increase (high
temperature—low frequency) . The maximum in MA
appears at lower temperatures (or higher frequencies)
than the corresponding value of the loss factor eA. This
behaviour implies a decrease in the relaxation time, in
the modulus mode, in comparison to the relaxation
time in the permittivity mode and this experimental
result is in accordance with the theoretical consider-
ations stated earlier. Therefore, using the electric
modulus formalism, the peak losses appear at higher
frequencies offering a significant advantage, especially
in the case of relaxation in the low-frequency region
like MWS, also making possible the determination of
activation energy of the process. Furthermore, the
presence of e@ in the denominator to the second power
in the function giving MA (Equation 1) minimizes the
tendency of e@, because of its high values, to over-
whelm the loss function (tg d"eA/e@"MA/M@).

Finally, the contribution of electrode polarization
effects on the M@ data can be very small, if care has
been taken to ensure good ohmic contact between the
electrodes and the sample, as in the case of the silver
paint contacts. Thus, the necessity for any correction
of the M@ values is actually becoming negligible and
the data obtained in the electric modulus mode can be
treated accordingly [10, 13, 34].

5. Conclusion
The formalism of electric modulus is considered suit-
able for the investigation of the dielectric behaviour of
polymeric composites with a conductive component.
It is capable of revealing interfacial relaxation which,
in most cases, is covered by the conductivity of the
material.

All equations describing relaxations in the dielectric
terminology, e.g. Debye, Cole—Cole, Davidson—Cole,
Havriliak—Negami, and Sillars, are transformed and
expressed in the electric modulus mode.

In the binary composites of epoxy resin with Kevlar
fibres and in hybrid composites of epoxy resin with
Kevlar fibres and aluminium particles as fillers, inter-
facial polarization is best described by the David-
2036
son—Cole approach because of the asymmetric distri-
bution of relaxation times due to the presence of
particles in the composites. In hybrid composites with
greater filler content and thus higher heterogeneity,
the interfacial relaxation process is best described by
the Havriliak—Negami approach with values of a and
c parameters corresponding to a narrow distribution
of relaxation times. This behaviour can be considered
to respond to an induced macroscopic homogeneity
performance of the systems as a result of the increased
value of filler content.
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